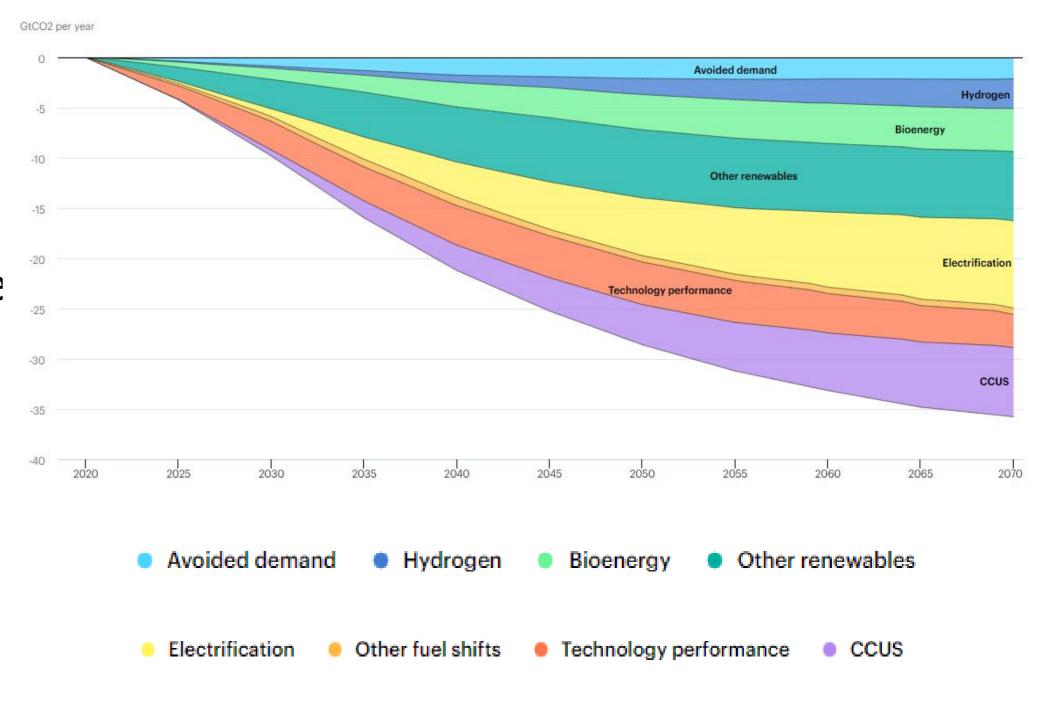

CCS IN ASIA

SECOND ASIA CCUS NETWORK MEETING

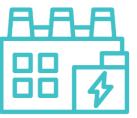
ALEX ZAPANTIS GENERAL MANAGER COMMERCIAL, GLOBAL CCS INSTITUTE

THE GLOBAL CCS INSTITUTE

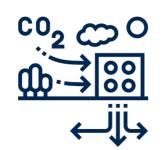

7 locations

WHY CCS?

- Scientific consensus that CCS is necessary to achieve our climate goals.
- Three of four IPCC illustrative pathways require CCS.
- IEA suggests up to 15% of global emissions could be abated through CCS.



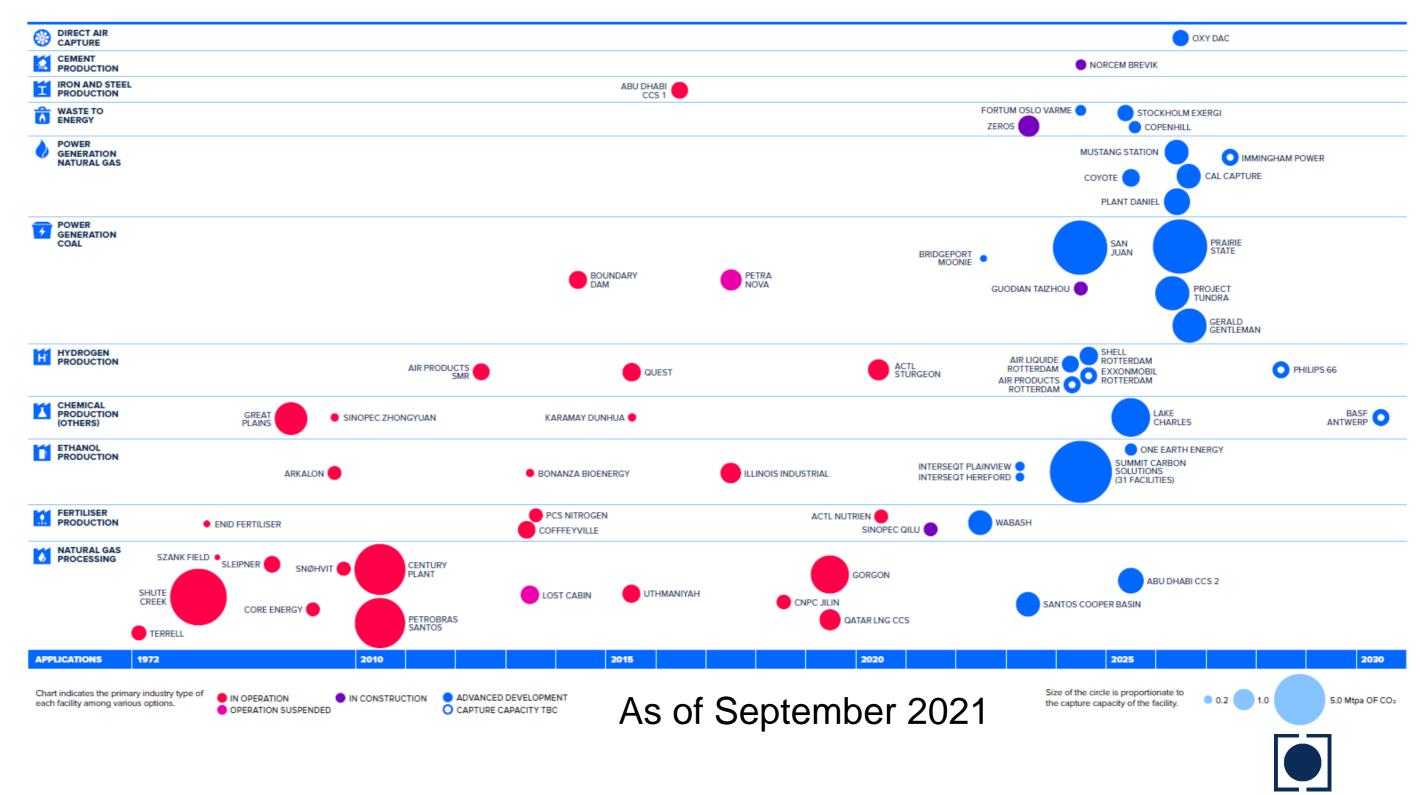
CCS: REACHING NET-ZERO AND DRIVING THE LOW-CARBON ECONOMY

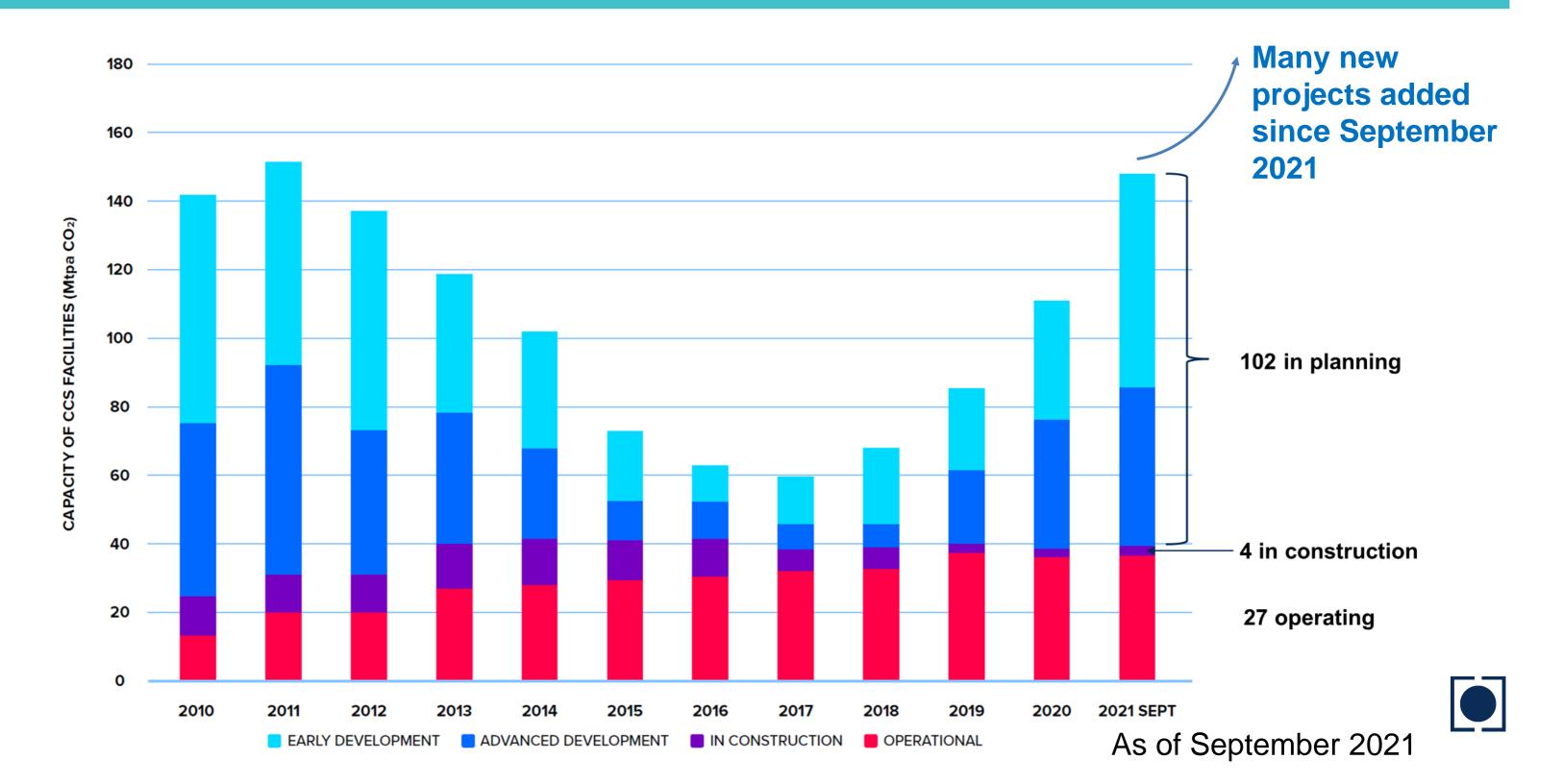


Achieving deep decarbonisation in hard-to-abate industry.

Enabling the production of low-carbon hydrogen at scale.

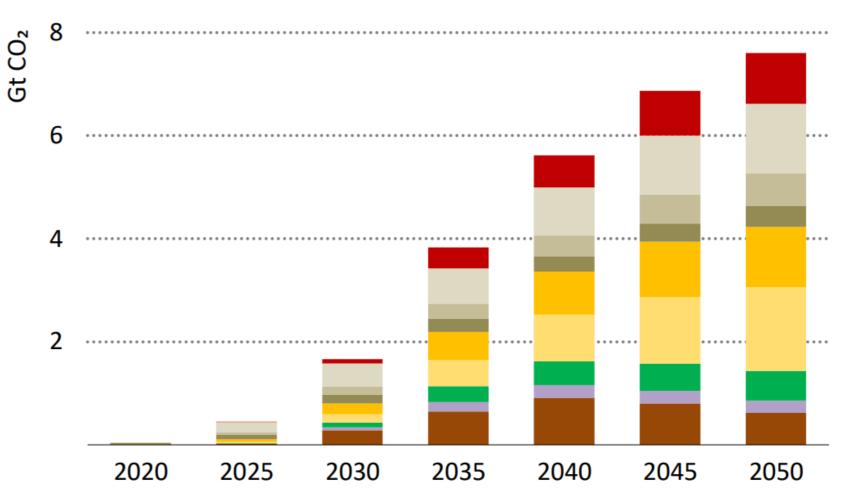
Providing low carbon dispatchable power.


Delivering negative emissions.



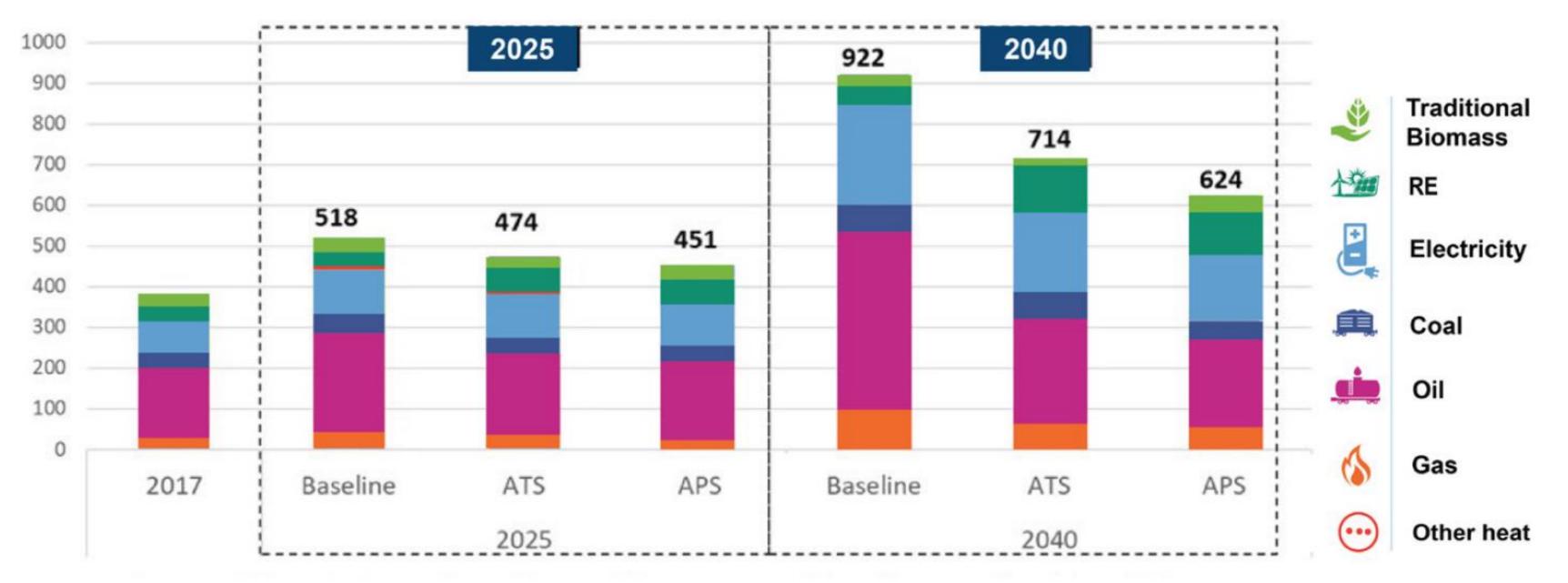
CCS FACILITIES

- CCS- EOR 50 years
 old (Terrell)
- CCS dedicated storage 26 years old (Sleipner)
- Lower partial pressure CO₂ capture becoming commercially feasible


CAPACITY OF CCS PROJECTS

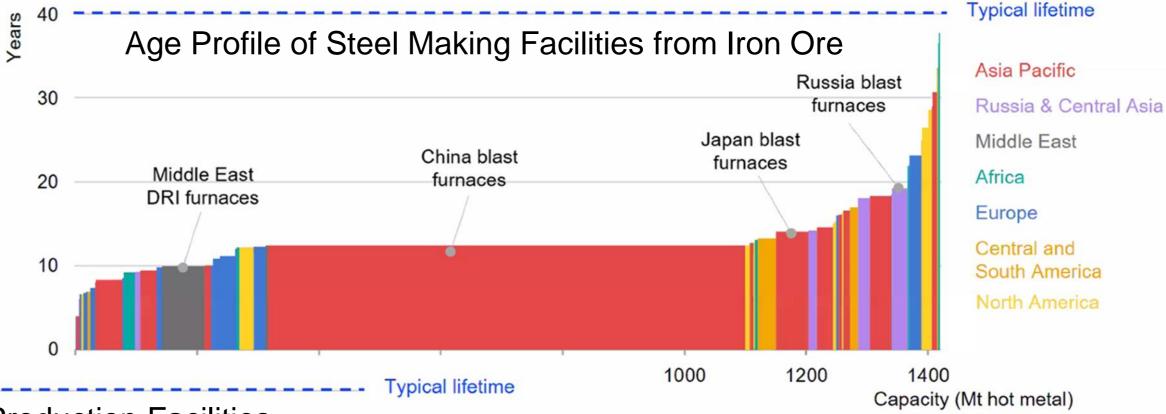
CCS ACCELERATION NEEDED

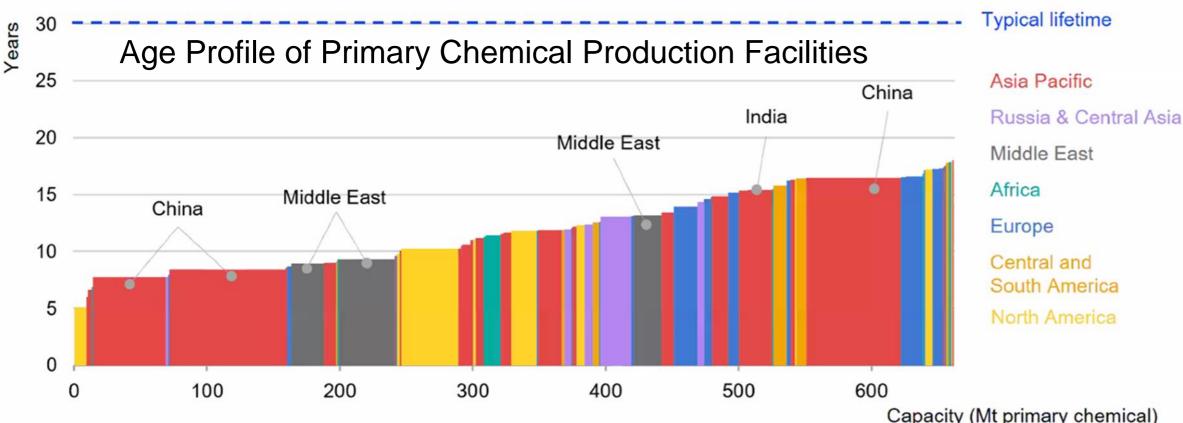
- According to IEA NZE, by 2050 7.6 GtCO₂ captured per year, including 2.4 Gt removal from BECCS and DACCS.
- CCUS across diverse sectors and increasingly important to industry.
- Stronger policy to incentivise rapid CCS investment is required.



Other Direct air capture
 Fuel supply Hydrogen production Biofuels production Other
 Industry Industry combustion Industry processes
 Electricity sector Bioenergy Case
 Gas Coal

ASEAN – DYNAMIC ECONOMIES WITH STRONG ENERGY DEMAND GROWTH


ASEAN Total Final Energy Consumption



Source: ASEAN Plan of Action for Energy Cooperation 2016 - 2025; Phase II: 2021-2025

APAC; ~HALF GLOBAL STEEL & CHEMICAL PRODUCTION

Most APAC industrial capacity has decades of economic life



GCCSI – INCREASED FOCUS ON ASIA

GCCSI 2023-2027 Five Year Strategy includes:

- Expansion of efforts in South East Asia directly and through supporting new networks
- Expand global footprint of GCCSI into South East Asia

SOUTHEAST ASIA CCS ACCELERATOR

SEACA Pillars

CCS Regulation	Enabling Policy	
To develop fit-for-purpose guidance on CCS regulation in Southeast Asia to support the development and promulgation of legislation.	To identify and define specific policy options that will enable investment in commercial CCS projects in Southeast Asia and to support their development and implementation by relevant governments.	To disc data re resourc geolog in Sout Geolog Gap Ar
Engage Stakeholders 🔿 Ider	ntify Projects 🔿 Define Specific Barriers	→
Focus	on Near-Term Deplo	сут

Geological Storage

scover and where possible, release relevant to geological storage urce appraisal and materially advance ogical storage resource development outheast Asia. To complete a ogical Storage Resource Assessment Analysis for Southeast Asia.

Develop Specific Solutions

nent

SOUTHEAST ASIA CCS ACCELERATOR

Workplan – Year One

	CCS Regulation	Enabling Policy							
Seed Analysis by GCCSI	Summary paper on CCS regulation	Quantitative modelling of role and economic value of CCS in Southeast Asia							
1 st Workshop 23Q1	Initial engagement and introduction to seed analysis, initial definition of barr work/analysis/consultation, agree gov								
2nd Workshop 23/Q3	Report on progress on agreed work/a first discussion of potential solutions,	analysis/consultation, more refined de agree next steps							
3rd Workshop 24Q1	Report on progress on agreed work/analysis/consultation, barriers clearly solutions for further analysis/consultation defined, priorities for year two ag								

Geological Storage

Identification & description of prospective basins in Southeast Asia

on of stakeholders, presentation of of near-term projects, prioritisation of

efinition of barriers and opportunities,

defined and agreed, menu of greed

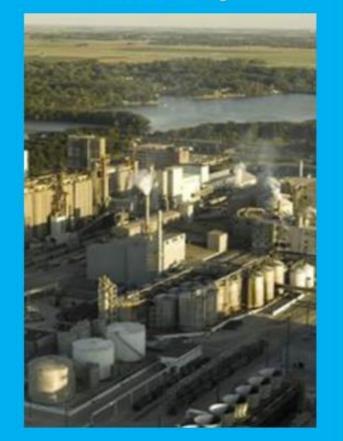
SOUTHEAST ASIA CCS ACCELERATOR

Outcomes

- Ambition is to accelerate near-term investment in CCS in Southeast Asia
- Focussed collaboration between stakeholders to advance specific CCS projects
 - Common understanding of opportunities, barriers and solutions
 - Commitment to action
 - The art of the possible applied to CCS!
- Identification of synergies between potential CCS investments
- Strong advocacy for CCS in SE Asia
- Business relationships, networks

THANK YOU

11


CCS - VERSATILE

Power Sector

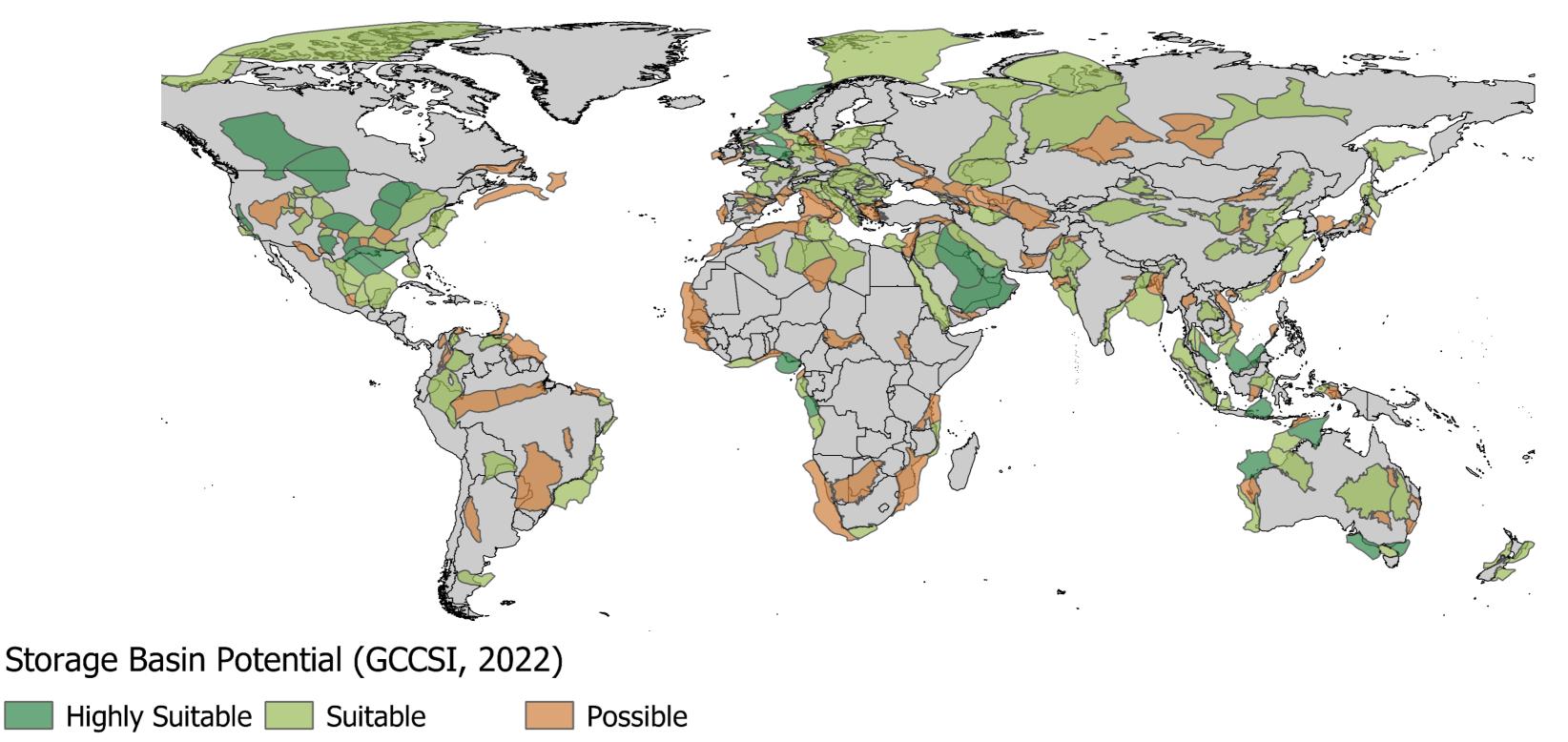
Coal (Bound. Dam) Gas (Peterhead) **Biomass (Drax)**

Industry

Steel (Al Reyadah) Fuels (ADM, Qatar) **Chemicals (Enid)**

Port Arthur (USA) Quest (Canada) Sinopec Qilu (China)

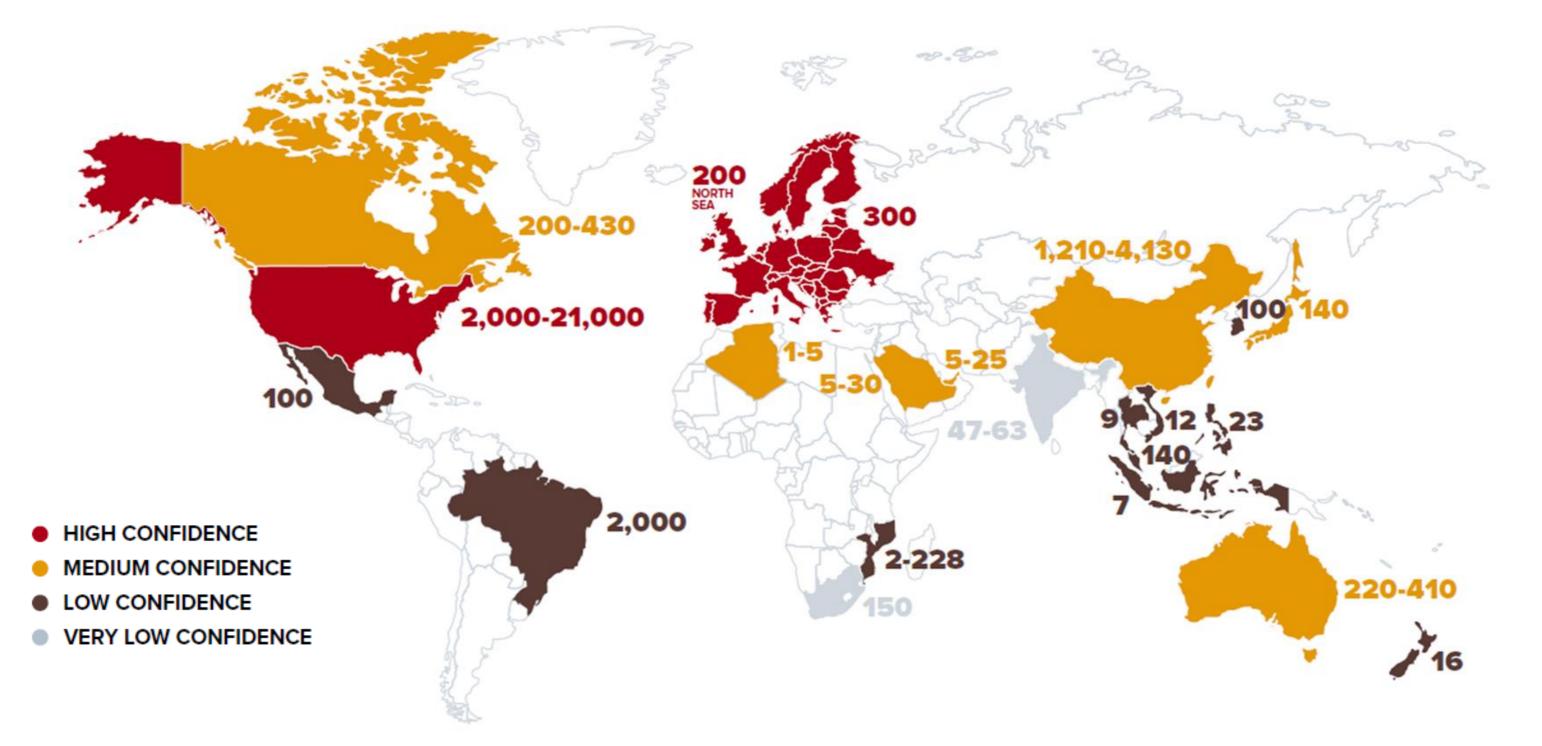
CO₂ removal



Direct Air Capture Bioenergy + CCS C Mineralization

GEOSPHERE C STORAGE – AMPLE CAPACITY

CO₂ Geological Storage Capacity – Global Distribution



GEOSPHERE C STORAGE – AMPLE CAPACITY

CO₂ Geological Storage Capacity – Billion of Tonnes

THE CONTINUED RISE OF CCS NETWORKS

- Over 30 CCS Networks in Development
- Unit cost reductions through economies of scale
- Risk reduction through multi-party business
 ecosystems
- Smaller capture sources become feasible
- CO₂ transport and storage as a business

APACITY (Mtpa)	SE	сто	R												TR	TRANSPORT STORA					GE	GE		
	COAL FIRED POWER	NATURAL GAS POWER	NATURAL GAS PROCESSING	FERTILISER PRODUCTION	HYDRO GEN PRODUCTION	IRONAND STEEL PRODUCTION	ALUMINIUM PRODUCTION	CHEMICAL AND PETROCHEMICAL PRODUCTION	CEMENT PRODUCTION	O IL REFINING	ETHANOL PRODUCTION	WASTE INCINERATION	BIOMASS POWER	DIRECT AIR CAPTURE	MPELINE	dHS	ROAD	DIRECT INJECTION	DEEP SALINE FORMATIONS	BNHANCED OILRECOVERY	DEPLETED OIL AND GAS RESERVORS	VARIOUS OPTIONS CONSIDERED		
.7 - 14.6	5	8	â	ž	2 H	ž	ž	2	ž	á	ž	ž	贤	8	i	-	8	2 O	3	<u>२</u> 0	8	8		
0 - 17.0	- 0	÷	÷	-	-	11	111	-	-	in the	÷	-	*	ě	ī	-	-	ŏ	8	0	0	0		
		1		101	100		101		00	Post line			-	0	1	0		0	_	0	0	0		
.9 - 19.4	-		1.1	100			100	1.3	-	-	-	1.1	-	2	-	10		~	0	2	0			
.9	-	+	144	14	110			2.3	-	101	1	11	0	0	•	10		0	0	0	0	0		
.0 - 15.0	-	-		14	and a		10	11				-	0	0	•	10		0	-	0	0	8		
5	-		1.1	100	100			-	-		1	-	-	0	•	10		-	0	0	0	0		
.5 - 18	-	•	-	100	100	200	100			101	14	CI.	٥	0	÷	8		0	0	0	0	8		
.0	100	÷			201		100	10	00		11			0	i	8		0	-	0	0	0		
5 - 10.0	- 1.3	-		-			Red I	2	-	1		10	-	0	-	•		0	0	0	0	0		
0	12	-	L.I.	10		24	1 Cl	_	-	-	14			0	-	-				0	0	0		
8-6.0	-		10		11			M	100	1.1	1.1	-	-	0	-	100		0	0	0	0	0		
0	-	•	1.1			-	ALC: N	-	00	1.1		-	-	0	-	10	-	~	0	0	0	_		
Ip to 18.3	102	-	21	10			101		-	101	-	-	-	0	-	1	-	~	0	0	0	8		
0-100	-	•	-	Real Property			101		29		111	-	-	0	1			14	0	0	0	0		
.5 - 5.0		+	5.1		1		Post.	2		1		Ô	-	00	-	-		0	0	0	0	0		
0	-	-	-	21	H.		PER					100	-	0	-	10	-	0	0	0	0	0		
0-50	-	+	1.1	and a		-	101				-	Ô	-	0	1	1	-	1	2	0	0	8		
.0 - 6.0		+	1.0		-		101		-					0	;	-		0	0	0	0	0		
.5	10	-	1	1	100	-	100	8.3	20		1.5		-	0	-	-	-		0	2	0	0		
0	-		21	2.0	M		100	123	-	1.1	1.1	Ô	-	0	1	10		<u></u>	0	0	0	-		
Ip to 4.0	-	•	-	10	_	-		2.3	-		-	-	-	0	T	11			-	0	0	0		
7 - 5.0	-	0		Red L			201	-		104		1.1	0	0	÷	10			0	0	0	0		
2-3.0		-	1.1	-		-	100				14	-	5-0 	0	•	100	-		-	0	-	0		
.0 - 5.0		-	E.S.		14	1.44				-	14			0	+	12	-		0	0	0	0		
fore than 20.0		-			M					Ľ	1.1	1.1	0	0	٠	_	-	0	0	0		0		
.8	-	-	-	100	H	-	-	2	-	100	11	0	-	0		-	-		0	0		0		
0.0	12	+	E.S.		110			-	-	10	-	11	0	0	•	-	_	0	_	0	_	_		
.5	- 12	0				Ĩ			-		-	11	0	0	٠	-		0	0	0	0	-		
p to 100.0		Ô.	23	0	121	13			pà.	Ċ		1.1	۵	0	-	8	20	0	0	0	0	0		
fore than 20.0		6	11		H,	ï	11		1	Ó	Ľ	Ô	۵	0	÷	۵	26	_	0	0	Θ	0		
0		٠			H.				\$ i	Ċ					÷				0			\otimes		
.0 - 10.0					H.	Ť		1		ľ	1				÷				0			0		

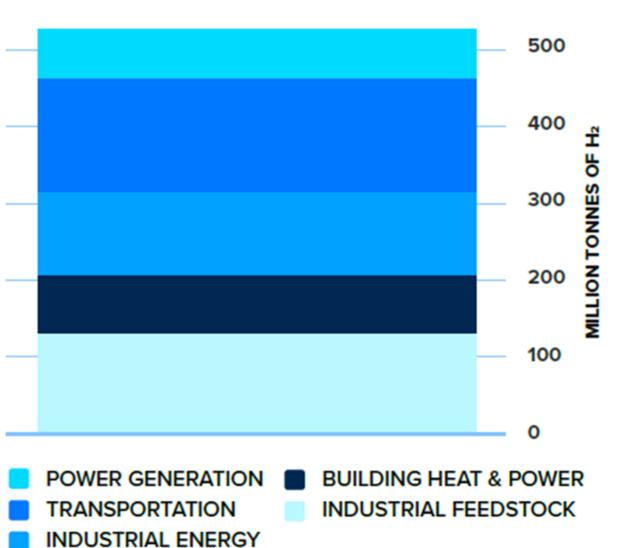
IN OPERATION O ADVANCED DEVELOPMENT EARLY DEVELOPMENT

CLEAN H₂: FROM 1MTPA TO 500MTPA

H₂ PRODUCTION 2020 120Mtpa

GREY H₂ Fossil origin, no CCS: 97% Chlor-alkali bi-product: 2%

CLEAN H₂ Fossil origin with CCS or renewable powered electrolysis: 1%

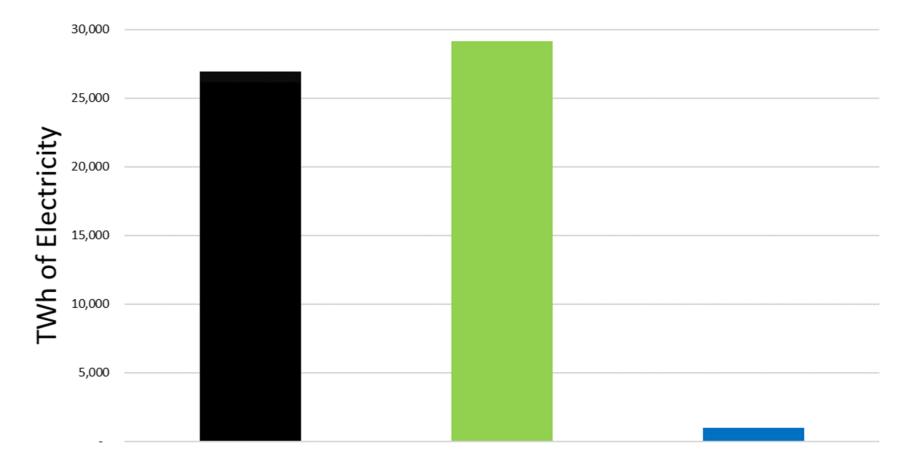

H₂ PRODUCTION 2050 530Mtpa

100% Clean H2 (Mixture of Green and Blue H2)

CLEAN H₂ (FOSSIL ORIGIN WITH CCS OR RENEWABLE POWERED ELECTROLYSIS) H2 MIXED WITH OTHER GASES (FOSSIL ORIGIN WITHOUT CCS OR CHLOR-ALKALI BI-PRODUCT PURE H₂ (FOSSIL ORIGIN WITHOUT CCS)

All figures are approximate. 2050 utilisation taken from Hydrogen Council 2017.

H₂ UTILISATION 2050



PRODUCING 530MT CLEAN H, REQUIRES..

0.01 million km^2 for Blue H₂, 1.73 million km² for Green H₂

Green H₂ land requirement based on land required by AREH project in North-West Australia. Blue H₂ land requirement assumes 530 500km x 20m corridors for CO₂ pipelines plus area for plant & CO₂ injection

Global Electricity Generation - 2019

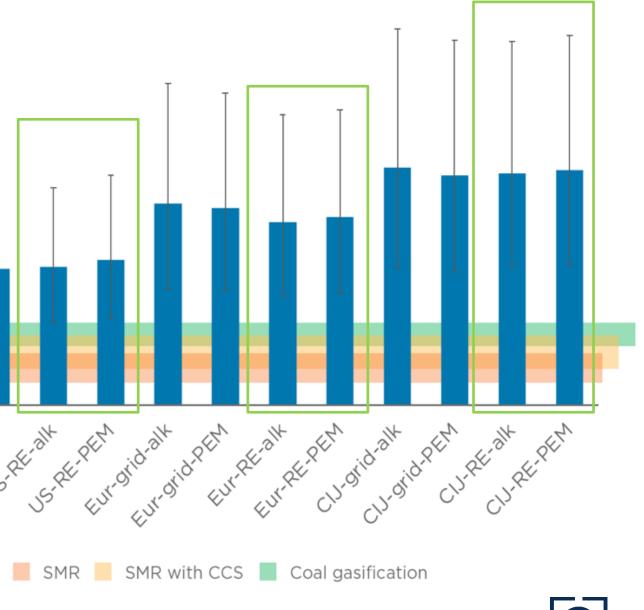
Assumes 55kWh to produce 1kg of H₂ via electrolysis. Includes electricity for upstream gas production for Blue H₂

1,000TWh for Blue H_2 29,000TWh for Green H₂

Electricity Required to Produce 530Mt of Green H2

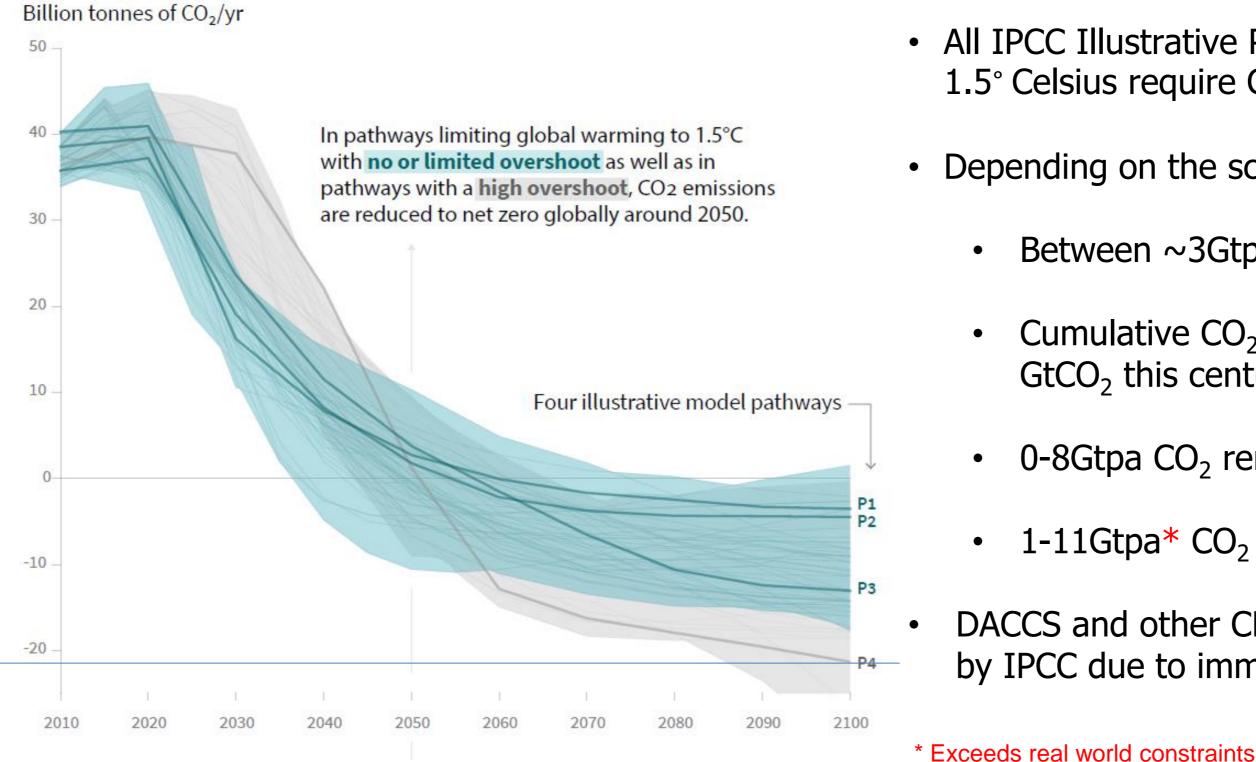
Electricity Required to Produce 530Mt of Blue H2 (SMR+CCS)

BLUE H₂, **IS LOWER COST ALMOST EVERYWHERE**



Cost Distribution by Case

Monte Carlo Simulation


- Electrolyser efficiency
- Capital cost
- Electricity price
- Capacity factor

Estimated 2030 Costs (US, EU, CIJ)

Source: Fan et al 2021 (Center on Global Energy Policy, Columbia University)

CDR-ESSENTIAL FOR 1.5°C

- All IPCC Illustrative Pathways to limit warming to 1.5° Celsius require CDR
 - Depending on the scenario...
 - Between ~3Gtpa and >20Gtpa by 2100
 - Cumulative CO₂ removed ~ 100 to 1000 GtCO₂ this century
 - 0-8Gtpa CO₂ removed via BECCS by 2050
 - 1-11Gtpa* CO₂ removed via AFOLU by 2050
 - DACCS and other CDR options not considered by IPCC due to immature literature

REALISING CCS AT SCALE GLOBALLY

Define the role of CCS and CDR in meeting national climate strategies and plans, set and communicate targets.

Create a long-term, high value on the storage of CO_2 .

Support the identification and appraisal of geological storage resources.

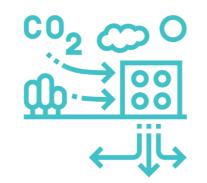
Develop specific CCS laws and regulations.

Identify opportunities for CCS networks and facilitate the establishment of transport and storage infrastructure.

Enable investment in CCS through appropriate policy and market mechanisms.

DRIVERS OF CCS MOMENTUM

Net Zero Commitments



Strengthening policy support for CCS

Rise of CCS Networks

Technology-based Carbon Dioxide Removal

Emergence of Strategic Business Partnerships

Blue Hydrogen Projects

